854 research outputs found

    How can we make gan perform better in single medical image super-resolution? A lesion focused multi-scale approach

    Get PDF
    Single image super-resolution (SISR) is of great importance as a low-level computer vision task. The fast development of Generative Adversarial Network (GAN) based deep learning architectures realises an efficient and effective SISR to boost the spatial resolution of natural images captured by digital cameras. However, the SISR for medical images is still a very challenging problem. This is due to (1) compared to natural images, in general, medical images have lower signal to noise ratios, (2) GAN based models pre-trained on natural images may synthesise unrealistic patterns in medical images which could affect the clinical interpretation and diagnosis, and (3) the vanilla GAN architecture may suffer from unstable training and collapse mode that can also affect the SISR results. In this paper, we propose a novel lesion focused SR (LFSR) method, which incorporates GAN to achieve perceptually realistic SISR results for brain tumour MRI images. More importantly, we test and make comparison using recently developed GAN variations, e.g., Wasserstein GAN (WGAN) and WGAN with Gradient Penalty (WGAN-GP), and propose a novel multi-scale GAN (MS-GAN), to achieve a more stabilised and efficient training and improved perceptual quality of the super-resolved results. Based on both quantitative evaluations and our designed mean opinion score, the proposed LFSR coupled with MS-GAN has performed better in terms of both perceptual quality and efficiency.Jin Zhu’s PhD research is funded by China Scholarship Council (grant No.201708060173). Guang Yang is funded by the British Heart Foundation Project Grant (Project Number: PG/16/78/32402)

    Artificial co-drivers as a universal enabling technology for future intelligent vehicles and transportation systems

    Get PDF
    This position paper introduces the concept of artificial “co-drivers” as an enabling technology for future intelligent transportation systems. In Sections I and II, the design principles of co-drivers are introduced and framed within general human–robot interactions. Several contributing theories and technologies are reviewed, specifically those relating to relevant cognitive architectures, human-like sensory-motor strategies, and the emulation theory of cognition. In Sections III and IV, we present the co-driver developed for the EU project interactIVe as an example instantiation of this notion, demonstrating how it conforms to the given guidelines. We also present substantive experimental results and clarify the limitations and performance of the current implementation. In Sections IV and V, we analyze the impact of the co-driver technology. In particular, we identify a range of application fields, showing how it constitutes a universal enabling technology for both smart vehicles and cooperative systems, and naturally sets out a program for future research

    Global Existence Results and Uniqueness for Dislocation Equations

    Get PDF
    We are interested in nonlocal Eikonal Equations arising in the study of the dynamics of dislocations lines in crystals. For these nonlocal but also non monotone equations, only the existence and uniqueness of Lipschitz and local-in-time solutions were available in some particular cases. In this paper, we propose a definition of weak solutions for which we are able to prove the existence for all time. Then we discuss the uniqueness of such solutions in several situations, both in the monotone and non monotone case

    Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI

    Get PDF
    Abstract. Land subsidence occurred at the Venice coastland over the 2008–2011 period has been investigated by Persistent Scatterer Interferometry (PSI) using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr−1. For instance, settlements of 30–35 mm yr−1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr−1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr−1 confirms the general stability of the historical center

    Selfishness, altruism and message spreading in mobile social networks

    Get PDF
    Many kinds of communication networks, in particular social and opportunistic networks, rely at least partly on on humans to help move data across the network. Human altruistic behavior is an important factor determining the feasibility of such a system. In this paper, we study the impact of different distributions of altruism on the throughput and delay of mobile social communication system. We evaluate the system performance using four experimental human mobility traces with uniform and community-biased traffic patterns. We found that mobile social networks are very robust to the distributions of altruism due to the nature of multiple paths. We further confirm the results by simulations on two popular social network models. To the best of our knowledge, this is the first complete study of the impact of altruism on mobile social networks, including the impact of topologies and traffic patterns.published_or_final_versio

    The value function of an asymptotic exit-time optimal control problem

    Full text link
    We consider a class of exit--time control problems for nonlinear systems with a nonnegative vanishing Lagrangian. In general, the associated PDE may have multiple solutions, and known regularity and stability properties do not hold. In this paper we obtain such properties and a uniqueness result under some explicit sufficient conditions. We briefly investigate also the infinite horizon problem
    • 

    corecore